Search results for "positive solutions"
showing 10 items of 11 documents
Positive solutions for singular double phase problems
2021
Abstract We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a p-Laplacian and of a weighted q-Laplacian ( q p ) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter λ > 0 , the equation has at least two positive solutions.
Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian
2017
Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.
Nonlinear concave-convex problems with indefinite weight
2021
We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.
Positive solutions of discrete boundary value problems with the (p,q)-Laplacian operator
2017
We consider a discrete Dirichlet boundary value problem of equations with the (p,q)-Laplacian operator in the principal part and prove the existence of at least two positive solutions. The assumptions on the reaction term ensure that the Euler-Lagrange functional, corresponding to the problem, satisfies an abstract two critical points result.
Positive solutions for the Neumann p-Laplacian
2017
We examine parametric nonlinear Neumann problems driven by the p-Laplacian with asymptotically ( $$p-1$$ )-linear reaction term f(z, x) (as $$x\rightarrow +\infty $$ ). We determine the existence, nonexistence and minimality of positive solutions as the parameter $$\lambda >0$$ varies.
Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
2020
AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.
Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains
1995
Existence of two positive solutions for anisotropic nonlinear elliptic equations
2021
This paper deals with the existence of nontrivial solutions for a class of nonlinear elliptic equations driven by an anisotropic Laplacian operator. In particular, the existence of two nontrivial solutions is obtained, adapting a two critical point results to a suitable functional framework that involves the anisotropic Sobolev spaces.
On a Robin (p,q)-equation with a logistic reaction
2019
We consider a nonlinear nonhomogeneous Robin equation driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation) plus an indefinite potential term and a parametric reaction of logistic type (superdiffusive case). We prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter \(\lambda \gt 0\) varies. Also, we show that for every admissible parameter \(\lambda \gt 0\), the problem admits a smallest positive solution.
Oscillation of Second-Order Neutral Differential Equations
2013
Author's version of an article in the journal: Funkcialaj Ekvacioj. Also available from the publisher at: http://www.math.kobe-u.ac.jp/~fe/ We study oscillatory behavior of a class of second-order neutral differential equations relating oscillation of these equations to existence of positive solutions to associated first-order functional differential inequalities. Our assumptions allow applications to differential equations with both delayed and advanced arguments, and not only. New theorems complement and improve a number of results reported in the literature. Two illustrative examples are provided.