Search results for "positive solutions"

showing 10 items of 11 documents

Positive solutions for singular double phase problems

2021

Abstract We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a p-Laplacian and of a weighted q-Laplacian ( q p ) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter λ > 0 , the equation has at least two positive solutions.

Class (set theory)Double phase problemNehari manifold01 natural sciencesDirichlet distributionsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: MathematicsApplied mathematics0101 mathematics35J60 35D05Positive solutionsParametric statisticsMathematicsApplied Mathematics010102 general mathematicsSingular termSingular termMathematics::Spectral TheoryDifferential operatorTerm (time)010101 applied mathematicsDouble phaseDiscontinuous weightsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian

2017

Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.

Difference equationDiscrete boundary value problemTwo solution01 natural sciencesElliptic boundary value problemDirichlet distributionCritical point theory; Difference equations; Discrete boundary value problems; p-Laplacian; Positive solutions; Two solutions; Analysis; Applied MathematicsPositive solutionsymbols.namesakePoint (geometry)Boundary value problem0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisp-LaplacianAnalysiMixed boundary condition010101 applied mathematicssymbolsp-LaplacianCritical point theoryNonlinear boundary value problemLaplace operatorAnalysis
researchProduct

Nonlinear concave-convex problems with indefinite weight

2021

We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.

Numerical AnalysisPure mathematicslocal minimizerspositive solutionsNehari manifoldApplied MathematicsRegular polygonLagrange multiplierComputational MathematicsNonlinear systemSettore MAT/05 - Analisi Matematicanonlinear regularityAnalysisMathematics
researchProduct

Positive solutions of discrete boundary value problems with the (p,q)-Laplacian operator

2017

We consider a discrete Dirichlet boundary value problem of equations with the (p,q)-Laplacian operator in the principal part and prove the existence of at least two positive solutions. The assumptions on the reaction term ensure that the Euler-Lagrange functional, corresponding to the problem, satisfies an abstract two critical points result.

Positive solutionDifference equations(PS)-conditionpositive solutionsSettore MAT/05 - Analisi MatematicaDifference equationlcsh:Mathematics(pq)-Laplacian operator(p q)-Laplacian operatorlcsh:QA1-939Electronic Journal of Differential Equations
researchProduct

Positive solutions for the Neumann p-Laplacian

2017

We examine parametric nonlinear Neumann problems driven by the p-Laplacian with asymptotically ( $$p-1$$ )-linear reaction term f(z, x) (as $$x\rightarrow +\infty $$ ). We determine the existence, nonexistence and minimality of positive solutions as the parameter $$\lambda >0$$ varies.

Pure mathematicsPositive solutions Nonlinear regularity Nonlinear maximum principle Nonlinear Picone’s identityGeneral Mathematics010102 general mathematicsMathematical analysisLambda01 natural sciencesTerm (time)010101 applied mathematicsNonlinear systemSettore MAT/05 - Analisi Matematicap-Laplacian0101 mathematicsParametric statisticsMathematics
researchProduct

Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential

2020

AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.

Pure mathematicsSublinear functionPerturbation (astronomy)Sublinear and superlinear perturbationLambda01 natural sciencesNonlinear Picone’s identitySettore MAT/05 - Analisi MatematicaUniqueness0101 mathematicsMathematical PhysicsEigenvalues and eigenvectorsPositive solutionsMathematicsNonlinear regularityAlgebra and Number TheoryMinimal positive solution010102 general mathematicsDifferential operator010101 applied mathematicsNonlinear systemp-LaplacianIndefinite potentialUniquenessNonlinear maximum principleAnalysis
researchProduct

Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains

1995

Pure mathematicslack of emptinesspositive solutionsApplied MathematicsMultiplicity resultsNonlinear elliptic Dirichlet problemsMathematical analysisDirichlet L-functionvariational methodsDirichlet's energyDirichlet distributionExterior domainsDirichlet kernelsymbols.namesakeDirichlet's principlesymbolsExterior domains; lack of emptiness; Nonlinear elliptic Dirichlet problems; positive solutions; variational methodsAnalysisDirichlet seriesMathematics
researchProduct

Existence of two positive solutions for anisotropic nonlinear elliptic equations

2021

This paper deals with the existence of nontrivial solutions for a class of nonlinear elliptic equations driven by an anisotropic Laplacian operator. In particular, the existence of two nontrivial solutions is obtained, adapting a two critical point results to a suitable functional framework that involves the anisotropic Sobolev spaces.

Settore MAT/05 - Analisi MatematicaApplied MathematicsAnisotropic problem variational method positive solutions partial differential equationsAnalysis
researchProduct

On a Robin (p,q)-equation with a logistic reaction

2019

We consider a nonlinear nonhomogeneous Robin equation driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation) plus an indefinite potential term and a parametric reaction of logistic type (superdiffusive case). We prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter \(\lambda \gt 0\) varies. Also, we show that for every admissible parameter \(\lambda \gt 0\), the problem admits a smallest positive solution.

local minimizersminimal positive solutionsPure mathematicspositive solutionsGeneral MathematicsType (model theory)Lambda01 natural sciencesPositive solutionSet (abstract data type)Maximum principlesuperdiffusive reactionSettore MAT/05 - Analisi Matematicaindefinite potential0101 mathematicsParametric statisticsMathematicsMinimal positive solutionrobin boundary conditionlcsh:T57-57.97010102 general mathematicsRobin boundary conditionTerm (time)010101 applied mathematicsNonlinear systemmaximum principlelcsh:Applied mathematics. Quantitative methodsLocal minimizerOpuscula Mathematica
researchProduct

Oscillation of Second-Order Neutral Differential Equations

2013

Author's version of an article in the journal: Funkcialaj Ekvacioj. Also available from the publisher at: http://www.math.kobe-u.ac.jp/~fe/ We study oscillatory behavior of a class of second-order neutral differential equations relating oscillation of these equations to existence of positive solutions to associated first-order functional differential inequalities. Our assumptions allow applications to differential equations with both delayed and advanced arguments, and not only. New theorems complement and improve a number of results reported in the literature. Two illustrative examples are provided.

positive solutionsAlgebra and Number TheoryOscillationMathematical analysisdelayed argumentsoscillationcomparisonControl theoryOrder (group theory)VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Analyse: 411Geometry and Topologyadvanced argumentsNeutral differential equationsneutral differential equationsAnalysisMathematicsFunkcialaj Ekvacioj
researchProduct